
REGULAR ARTICLE

Abortive gdTCR rearrangements suggest ILC2s are derived from
T-cell precursors

Samuel B. Shin,1 Bernard C. Lo,1 Maryam Ghaedi,2 R. Wilder Scott,1 Yicong Li,1 Melina Messing,1 Diana Canals Hernaez,1 Jessica Cait,1

Taka Murakami,1 Michael R. Hughes,1 Kevin B. Leslie,1 T. Michael Underhill,1 Fumio Takei,2 and Kelly M. McNagny1

1The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and 2Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver,
BC, Canada

Key Points

•Under steady-state con-
ditions, tissue-resident
lung ILC2s exhibit TCR
gene rearrangements
similar to gdT cells

• Rearranged TCR
genes in ILC2s are ab-
errant and nonfunc-
tional, suggesting that
ILC2s arise from failed
T-cell development.

Innate lymphoid cells (ILCs) are a recently identified subset of leukocytes that play a central

role in pathogen surveillance and resistance, modulation of immune response, and tissue

repair. They are remarkably similar to CD41 T-helper subsets in terms of function and

transcription factors required for their development but are distinguished by their lack of

antigen-specific receptors. Despite their similarities, the absence of a surface T-cell receptor

(TCR) and presence of ILCs and precursors in adult bone marrow has led to speculation that

ILCs and T cells develop separately from lineages that branch at the point of precursors

within the bone marrow. Considering the common lineage markers and effector cytokine

profiles shared between ILCs and T cells, it is surprising that the status of the TCR loci in ILCs

was not fully explored at the time of their discovery. Here, we demonstrate that a high

proportion of peripheral tissue ILC2s have TCRg chain gene rearrangements and TCRd locus

deletions. Detailed analyses of these loci show abundant frameshifts and premature stop

codons that would encode nonfunctional TCR proteins. Collectively, these data argue that

ILC2 can develop from T cells that fail to appropriately rearrange TCR genes, potentially

within the thymus.

Introduction

Innate and adaptive immunity are characterized as distinct but cooperative systems that serve to protect
the host from foreign entities. The innate immune system is the front line of defense, responding rapidly
but lacking antigen specificity and memory. In contrast, the adaptive immune response operates with
delayed kinetics but exquisite specificity via selection of antigen-specific clones from a large pool of
lymphocytes and leads to clearance of the infection and formation of long-term recall responses.1 A
major player in the innate compartment is the recently described family of innate lymphoid cells (ILCs).
These cells play a central role in response to pathogens, modulating inflammation, and facilitating tissue
repair in a non–antigen-specific manner.2 Three major subsets (ILC1, -2, and -3) respond primarily to
alarmins such as interleukin-12 (IL-12), IL-18, and IL-15 (ILC1); IL-25, TSLP, and IL-33 (ILC2); and IL-23
and IL-1b (ILC3). They sculpt the immediate cytokine microenvironment for the downstream effector cells,
including adaptive immune cells.3,4 T cells, in contrast, represent a critical arm of the adaptive immune
system and coordinate antigen-specific immune response andmemory. Through antigen-specific receptors,
the hallmark of this branch of the immune system, they recognize a nearly infinite pool of antigens from
pathogens and tumors, establish long-term immunologic memory, and maintain self-tolerance.5

Although antigen specificity remains a unique hallmark that distinguishes the innate and adaptive
immune response, ILCs otherwise share striking molecular and functional similarities to CD41 T cells
and produce the same effector cytokines and transcriptional regulators. Specifically, like T helper 1 (Th1)
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cells, ILC1s express the transcription factor T-bet as a master
transcriptional regulator and produce interferon-g. ILC2s express the
Th2 transcriptional regulator GATA3 and produce IL-5 and IL-13, and
ILC3s express RORgt and secrete IL-17A and IL-22 like Th17
cells.6-8 This parallel expression of transcription factors and effector
cytokines has led to speculation that ILCs represent an evolutionary
precursor to adaptive immune cells that subsequently developed
antigen-specific receptors.9

Despite their striking similarities, current dogma suggests 2 major
distinctions between ILCs and T cells. The first is the lack of the
aforementioned antigen-specific surface receptors on ILCs.10 The
second is that T-cell development and maturation is compartmental-
ized almost exclusively in the thymus because of a critical requirement
of this unique microenvironment for the signaling of TCR gene
rearrangements and positive and negative receptor selection.11 In
contrast, ILC development is thought to occur in the bone marrow
(BM) where committed ILC precursors differentiate before peripheral
migration without further maturation in other lymphoid tissues.12-14

Intriguingly, however, a few previous studies and an elegant new
lineage-tracing study suggest that ILC2s seed the periphery
during perinatal development and that these cells then become
tissue resident, turn over slowly, and expand locally thereafter.15-17

Furthermore, targeted deletion of E-box protein transcription factors
and other essential regulators of T-cell development can lead to
aberrant generation of ILC2s in the thymus, and these express TCR
gene transcripts. Thus, in principal, the thymus could represent an
additional source of ILC2s, particularly in situations in which the
development of T cells is blocked.18

With regard to the expression of antigen-specific receptors, it is
remarkable that despite being a major distinguishing hallmark
between ILCs and T cells, few studies have evaluated the status
of the TCR loci in ILCs. To date, only T-cell progenitors and
occasional natural killer (NK) cells are proposed to undergo TCR
gene rearrangement. Because of its critical dependence on the
specialized microenvironmental niche provided by the thymus,
the likelihood that this event occurs in any other hematopoietic
lineage has been considered extremely low. Here, we performed
a detailed evaluation of the TCR receptor gene loci and their
transcripts in tissue-resident lung ILC2s. Strikingly, we find a high
frequency of sterile TCRg and b transcripts but not TCRd and a in
ILC2s. We also observe a high frequency of V-J gene rearrange-
ments in their TCRg chain loci and find that many of these cells
have deleted 1 copy of the TCRd chain locus. Although these DNA
rearrangements are readily detectable, we discovered that few, if
any, of the rearranged loci are transcribed, and instead transcripts
preferentially arise from the germline loci. In addition, sequence
analyses of DNA rearrangements suggest that the majority of
predicted transcripts from these loci would fail to encode full-
length TCR surface receptors because of either a high frequency
of out-of-frame DNA rearrangements or a loss of the TCRd locus.
In aggregate, we find that ILC2s share far greater similarities to
T cells than has previously been appreciated, and these argue for
a parallel developmental pathway.

Materials and methods

Mice

C57BL/6J, TCRd/b2/2 (B6.129P2-Tcrdtm1MomTcrbtm1Mom/J)
and Rag12/2 mice (originally from The Jackson Laboratories,

Bar Harbor, ME) were all maintained in a pathogen-free environment
at the Biomedical Research Centre. All experiments were performed
according to the institutional and Canadian Council on Animal Care
guidelines approved by the University of British Columbia Animal
Care Committee.

Single-cell suspensions

Lungs from na ı̈ve wild-type (WT) mice were perfused with
phosphate-buffered saline containing 2 mM EDTA and were then
minced and digested with 200 U/mL collagenase IV (Sigma-Aldrich,
St Louis, MO) for 35 minutes at 37°C. Samples were passed
through a 70-mm cell strainer, and lymphocytes were enriched by
using a standard Percoll separation. Residual red blood cells were
lysed with Ack Lysing Buffer (Thermo Fisher Scientific, Waltham,
MA) for 5 minutes at 4°C. Before antibody staining, cells (1.03 107

to 2.0 3 107) were incubated with anti-CD16/32 (2.4G2) to
prevent nonspecific antibody binding. Splenic and thymic tissues
were passed through a 40-mm cell strainer and treated with Ack
Lysing Buffer for 7 minutes at 25°C to remove any remaining red
blood cells.

Antibodies and fluorescence-activated cell

sorting analyses

Fluorescein isothiocyanate–conjugated anti-mouse NK1.1 (PK136),
CD11c (N418), Gr1 (RB6-8C5), CD11b (M1/70), CD8a (53.67),
CD3e (2C11), CD19 (1D3), CD3 (KT3), B220 (RA-6B2), CD4
(GK1.5), andCD5 (53-7.3); peripheral blood–conjugated anti-mouse
CD45.2 (104) (eBioscience, San Diego, CA); allophycocyanin-
conjugated anti-mouse CD90.2 (53-2.1) (eBioscience); phycoerythrin-
conjugated anti-mouse CD25 (PC61) (BD Biosciences, San Jose,
CA); phycoerythrin-Cy7–conjugated anti-mouse CD127 (SB/199);
and PerCP-eFluor710–conjugated anti-mouse gdTCR (GL3)
(eBioscience) were used for tissue-resident lung ILC2 isolation.
gdT cells were sorted with peripheral blood–conjugated anti-
mouse CD45.2 (104), FITC-conjugated anti-mouseCD3e, CD3, and
PerCP-eFluor710–conjugated anti-mouse gdTCR. Viable cells were
identified using the eFluor 506 fixable viability dye (eBioscience).
Staining and antibody dilutions were prepared in phosphate-
buffered saline (Thermo Fisher Scientific) with 10% fetal bovine
serum (Gibco) and 2 mM EDTA. Cell sorting and fluorescence-
activated cell sorting analyses were performed on BD Influx, LSR-
II, and Beckman Coulter Cytoflex cell sorters, respectively.
Enrichment of splenic T cells was via the EasySep Mouse Biotin
Positive Selection Kit II (Stemcell Technologies, Vancouver, BC,
Canada).

Genomic PCR

Genomic DNA (gDNA) from isolated cells was extracted using
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) and
standard protocols. Quantity and purity (OD260/OD280 .1.8)
were determined by spectrophotometry using Nanodrop ND-1000
(Nanodrop Technologies, Wilmington, DE). For assessing TCRg
and TCRd, 20 mL of 40-ng gDNA, 5 mL of 2-mM forward and
reverse TCRg- and TCRd-specific primers (supplemental Materi-
als), and 25 mL of Taq polymerase chain reaction (PCR) Master Mix
(Qiagen) were subjected to 35 cycles of PCR: 1 minute at 94°C,
1 minute at 55°C, 1 minute at 72°C, and 10 minutes at 72°C. TCRb
PCR design was as described by Brady et al,19 and thermocycling
conditions were 3 minutes at 94°C followed by 35 cycles of 45
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seconds at 94°C, 1 minute at 60°C, 1 minute at 72°C, and
10 minutes at 72°C. All PCR amplicons (1 mL) were analyzed
using a QIAxcel Automated Capillary Gel Electrophoresis System
(Qiagen).

Copy number variation assay

TCRd loci were evaluated using real-time quantitative PCR (qPCR)
and reagents from Applied Biosystems (Foster City, CA). On a per
assay basis, the total reaction volume was 10 mL, containing
5 mL of TaqMan Fast Advance Master Mix, 0.5 mL of Custom
TaqMan Copy Number Assay, 0.5 mL of TaqMan Copy Number
Reference Assay (Mouse Tfrc), gDNA template, primers, probe,
and nuclease-free water (supplemental Materials). Thermocy-
cling conditions were 20 seconds at 95°C, followed by 40
cycles of 1 second at 95°C and 20 seconds at 60°C. Analyses
were performed by using CopyCaller Software v2.1 provided by
Applied Biosystems.

RT-PCR

Total RNA was extracted using Trizol LS (Ambion, Austin, TX) and
reverse transcribed with a High Capacity cDNA Reverse Transcrip-
tion Kit (Thermo Fisher Scientific). Complementary DNA (cDNA)
samples for reverse transcription (RT)-PCR were equal to 150 ng
RNA. TCRg forward and reverse primers (supplemental Materials)
were used to evaluate whether cells express full-length TCRg
transcripts. Thermocycling conditions were 3 minutes at 94°C,
followed by 35 cycles of 1 minute at 94°C, 45 seconds at 50°C,
1 minute at 72°C, and 10 minutes at 72°C. All PCR amplicons (1 mL)
were imaged using a QIAxcel Automated Capillary Gel Electropho-
resis System.

Next-generation sequencing of PCR amplicons

and analysis

To minimize errors during nucleotide addition in genomic PCR, Q5 Hot
Start High Fidelity DNA polymerase (New England Biolabs, Ipswich,
MA) was used instead of Taq polymerase when sequencing
rearranged TCRg loci in tissue-resident lung ILC2 and gdT-cell
samples. Total reaction volume was 50 mL, containing 25 mL of Q5
Hot Start High-Fidelity 2X Master Mix, 6.25 mL of 2-mM forward and
reverse primers, 18.75 mL of 4-ng gDNA, and nuclease-free water.
Thermocycling conditions were as follows: 30 seconds at 98°C
followed by 35 cycles of 10 seconds at 98°C, 30 seconds at 60°C,
20 seconds at 72°C, and 2 minutes at 72°C. PCR amplicons were
then purified and sequenced using the Illumina MiSEQ sequencing
platform with the read depth of 100 000 reads per sample at the
BRC Sequencing Core (University of British Columbia, Vancouver,
BC, Canada). Different combinations of rearranged TCRg sequen-
ces were then analyzed bioinformatically with tcR, MiXCR, and
vdjtools using standard parameters for gene alignment and
sequencing error correction. Plots were generated on R Studio
using ggplot2. High-throughput sequencing data are available
at Gene Expression Omnibus (GEO) under accession number
GSE152726.

Results

ILC subsets express TCR constant region genes

Previously, we used single-cell RNA sequencing (scRNA-seq) on
cecal ILC subsets to better understand the role of the transcrip-
tion factor RORa in ILC and NK cell lineage development and

Crohn’s-like fibrotic disease.20 As with that study, single-cell
libraries were aggregated on the basis of gene expression
similarities, and cluster identities were defined by signature ILC
subset genes.21,22 ILC1s, ILC2s, and ILC3s were represented in
clusters 1 to 4, and NK cells were excluded for the purpose of this
study (Figure 1A-B). Despite the fact that these fractions were
rigorously depleted for surface CD3 and TCR expression, we found
that all cecal ILC subsets display high-level expression of Cb genes
but differentially express Cd, Cg, and Ca transcripts. Specifically,
transcripts of Ca are expressed at high levels predominantly by ILC1
and ILC3 clusters (clusters 1, 3, and 4), whereas Cg expression is
largely restricted to ILC1 and ILC2 clusters (clusters 1 and 2). Cd
transcripts were found to be limited to the ILC1 cluster, suggesting
that ILCs transcribe a wide range of their TCR genes with a distinct
and unusual locus bias (Figure 1C).

To confirm TCR constant region gene expression as a general
feature of tissue-resident ILCs and rule it out as a unique feature of
the high-turnover gut microenvironment, we conducted similar
evaluations of TCR constant region genes in lung ILC2s, which are
easily enriched from this tissue because of their abundance and
slow turnover at steady state.15,17 Two rounds of purification were
performed based on surface markers Lin–CD45.21Thy1.2hiCD251

CD1271 gdTCR–, and T and NK cells were rigorously depleted using
antibodies against NK1.1, CD3, CD4, CD8, and CD5 (Figure 2A).23

Before final lysis, sorted cells were evaluated for gdTCR surface
expression to exclude any possibility of contamination (Figure 2B).
Again, we observed selective expression of the constant region
genes in a pattern similar to that seen in gut ILC2 subsets: strong
expressions of Cg and Cb region genes whereas transcripts of Cd
and Ca were absent. As a further control for T-cell contamination,
a similar population was isolated from Rag12/2 mice, which lack all
T and B cells because of a lesion in VDJ recombinase expression.24

Interestingly, these ILC2s also showed Cg and Cb transcripts, which
argues that these represent expression of sterile transcripts from
unrearranged TCR alleles in ILC2s (Figure 2C). To independently
verify this observation at the single-cell level, we performed scRNA-
seq and observed that, likewise, the majority of cells expressed high
levels of Cb and Cg4 messenger RNAs (mRNAs) whereas Cd and
Ca transcripts were largely absent.25 Intriguingly, these analyses
also showed that virtually all cells expressing Cd and Ca transcripts
failed to express Cg transcripts, consistent with the inability of these
cells to ever express a functional TCR (Figure 2D). These data
argue that several TCR loci are accessible and transcribed in ILC
subsets.

Lung ILC2s undergo TCRg gene rearrangement while

failing to properly rearrange TCRd

We next evaluated the rearrangement status of the TCRg, TCRd,
and TCRb loci in WT naı̈ve lung ILC2s. The murine TCRg locus
contains 4 variable (Vg), joining (Jg), and constant (Cg) region
clusters (supplemental Figure 1A), and PCR primers were designed
to produce an amplicon of 350 to 600 bp from genomic V-J DNA
segments that had undergone rearrangement.26 Six recombination
permutations, Vg2, Vg3, Vg4, Vg5, Vg1.1, and Vg1.2 and their
respective joining J segments (Jg1, Jg2, and Jg4), were evaluated to
fully profile all TCRg gene rearrangements (Figure 3A).27 To our
surprise, lung ILC2s exhibited the entire spectrum of possible V to J
rearrangement combinations with the sole exception of Vg1.1-Jg4.
To further confirm this result, ILC2s from adult Rag12/2 mice were
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sorted and tested in parallel. As expected, no such TCRg
gene rearrangements were detected in recombinase-deficient
cells. In technical and biological replicates (n 5 6), WT ILC2s
consistently exhibited Vg2-Jg1 and Vg1.2-Jg2 gene rearrange-
ments whereas Vg3-Jg1, Vg4-Jg1, and Vg5-Jg1 gene rearrange-
ments proved more variable between samples. Evaluation of
lung gdT cells revealed that although these also exhibited DNA
rearrangements, the pattern of Vg usage was consistently
distinct from that of ILC2s, further arguing against the likelihood
of gdT cells contaminating ILC2 preparations. In summary, our
data suggest that ILC2s undergo T-cell–type TCRg gene
rearrangements.

We used a similar genomic PCR strategy to evaluate TCRb and
TCRd rearrangements. The TCRb locus contains 23 functional

Vb segments and 2 Db-Jb-Cb clusters (supplemental Figure 1C)28;
thus, designing PCR primers for its entire repertoire was impractical.
Instead, we adapted the PCR strategy from Brady et al19 to assess
14 possible permutations. ILC2s exhibited no VDJ rearrange-
ments in their TCRd or TCRb loci in stark contrast to control
gdT cells (Figure 3B-C). Because the TCRd locus is nestled
between Va and Ja segments of the TCRa locus, we also sought
to ensure that our failure to detect TCRd rearrangements was not
a result of a deletion of the locus during TCRa gene rearrange-
ment (supplemental Figure 1D). To test this, qPCR-based copy
number variation assessment of Cd was compared between lung
ILC2s, gdT cells, and Rag12/2 splenocytes. Surprisingly, both
lung ILC2s and gdT cells exhibited a calculated Cd copy number
of 1, indicating that, on average, 1 TCRd allele is missing in these
cells (Figure 3D), whereas Rag12/2 splenocytes exhibited the
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expected 2 copies. These data would argue that some of the V
segments shared by TCRa and TCRd loci29 may rearrange to Ja
segments during TCRd gene rearrangement process in ILC2s. In
aggregate, these data provide clear evidence that lung ILC2s
undergo TCRg gene rearrangement and ineffectively recombine
the TCRd locus.

Lung ILC2s transcriptionally silence rearranged

Vg loci while maintaining sterile Cg expression

To test whether the rearranged TCRg loci are expressed in mature
ILC2s, the complementary-determining region 3 (CDR3) containing
sequences from Vg, Jg, and Cg segments was amplified via
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RT-PCR.26,30 Although we consistently obtained products of the
expected size for rearranged TCRg loci transcripts in gdT cells, we
failed to detect similar amplicons in ILC2s (Figure 4A). To further confirm
this result we assayed Vg to Jg regions in the total RNA to rule out the
possibility of unprocessed pre-mRNAs being present. Consistent with
the previous findings, we detected no rearranged TCRg pre-mRNAs in
these cells (Figure 4B).On the basis of our previous ability to consistently
detect Cg transcripts in ILC2s by scRNA-seq (Figures 1C and 2D), we
conclude that although ILC2s are able to rearrange their TCRg loci, they
fail to transcribe the rearranged alleles, and instead the Cg transcripts
detected in ILC2s are selectively produced by non-rearranged TCRg
constant regions in these cells. Taken together, these results indicate
that in ILC2s, rearranged TCRg loci are transcriptionally silenced while
sterile Cg transcripts are permitted from the non-rearranged alleles.

A high frequency of nonproductive TCRg locus

rearrangements in the ILC2 lineage

Because lung ILC2s fail to express transcripts from the rearranged
TCRg loci, we hypothesized that this may reflect transcriptional

silencing of alleles that have undergone unsuccessful/nonproductive
V(D)J recombination. To address this, we sequenced the genomic
PCR products from lung ILC2s and gdT cells. Vg2-Jg1 and Vg1.2-
Jg2 rearrangement combinations were compared because of their
frequent rearrangement in both lung ILC2s and gdT cells (Figure 3A).
Comparison of sequence diversity of the rearranged TCRg
genes (caused by random rearrangement events) between these
2 cell types showed that lung ILC2s exhibit a lesser degree of
potential TCRg clonotypes than gdT cells, which indicates that if
ILC2s were to express TCR proteins from these alleles, they
would exhibit a fairly limited repertoire compared with their
gdT cells counterparts (Figure 5A). Strikingly, when characteriz-
ing the frequency of in-frame and out-of-frame rearrangements of
the top 20 potential clonotypes, we found that nonfunctional
clonotypes of Vg2-Jg1 constituted, on average, 78% of the population
in lung ILC2s in contrast to 31% in gdT cells. In addition, potential
Vg1.2-Jg2 clonotypes of both ILC2s and gdT cells displayed a higher
proportion of nonfunctional clonotypes than their functional counter-
parts (Figure 5B-C). To summarize, we find that lung ILC2s fail to
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express their rearranged TCRg loci and that this correlates with
a high frequency of nonproductive TCRg chain rearrangements.

Because successful thymic T-cell development is strongly tied to
expression and signaling via the products of productive TCR
gene rearrangements, we sought to further evaluate whether
nonproductive TCR rearrangements could influence the pro-
portion of ILC2s in vivo. We assessed the frequency of thymic,
splenic, and lung ILC2s in adult WT, Rag12/2, and Tcrd/b2/2

mice and examined their absolute numbers and frequencies
compared with the total CD451 cells. Like RAG-deficient mice,
Tcrd/b2/2 mice also lack functional T lymphocytes because their
T-cell progenitors cannot express surface TCRs during develop-
ment, but they are distinct in that their recombination machinery is
still functional.31,32 We find that, in steady-state conditions, both
Rag2/2 and Tcrd/b2/2 mice exhibit a substantial increase in ILC2
frequency and number compared with the population observed in
WT mice (Figure 6A-B). We also observe that this increase is less
dramatic in Tcrd/b2/2 mice; however, this likely reflects the fact that
these mice are still capable of generating B cells, which serve to
dilute the frequency of ILC2s when compared with T-cell– and
B-cell–deficient Rag2/2 mice (Figure 6B). Of note, the CD1271

CD25hi population in the thymi of these knockout strains do not
express ST2 (IL-33R) (supplemental Figure 2) nor do they express
CD44 (data not shown), which confirms that these are indeed
double-negative (DN) cells arrested at the CD44–CD251 stage of
thymopoiesis.33 Collectively, we conclude that failure to initiate
TCR gene rearrangement or express functional TCR could causes
developing T cells to abort T-cell development and re-route into the
ILC2 lineage.

Discussion

In this article, we re-evaluate the key distinguishing feature between
T cells and ILCs: TCR recombination and mRNA expression. TCR
gene rearrangements have long been held as the key hallmark of
T-cell commitment because T cells require antigen-specific
receptors to survive, proliferate, and mount an effective immune
response.34 Strikingly, both scRNA-seq and RT-PCR show that

sterile TCR constant region transcripts are expressed at high
frequencies in cecal and lung ILC2s. Furthermore, lung ILC2s
undergo TCRg locus recombination and deletion of 1 allele of
the TCRd locus. In-depth sequence analyses of rearranged TCRg
loci in these cells reveal a lesser degree of sequence diversity than
conventional gdT cells and that these predicted clonotypes, if
expressed, would be largely nonfunctional because of out-of-frame
TCRg rearrangements. Furthermore, scRNA-seq data suggest
that single cells actively transcribe either TCRg or TCRd loci,
but not both, which would further preclude the opportunity to
produce a functional surface receptor. Consistent with pre-
vious studies in Rag12/2 mice, our results also suggest that
ILC2s can efficiently develop in mice in the absence of TCR
recombination machinery. That aside, the fact that these cells
frequently express sterile transcripts from the TCR gene loci
and, at some stage in their development, have initiated gene
rearrangements typical of gdT cells argues for a closely related
developmental pathway.

TCR gene rearrangements are thought to occur exclusively within
the thymic microenvironment, and we and others have observed
an increased frequency of ILC2s in RAG-deficient mouse thymus,
spleen, and lung tissue.35-37 Our data suggest that a failure to
appropriately rearrange TCR loci in the thymus may offer an
opportunity to shunt failed T cells into the ILC2 lineage. This view
aligns well with data gleaned from mice with lesions in essential
machinery for T-cell development. Qian et al18 showed that when
Id1 was ectopically expressed in T-cell progenitors to inhibit all
E-protein activities, including E2A and HEB transcription factors,
the result was a striking increase in the frequency of ILC2s in the
thymus, spleen, blood, and lung. Furthermore, lineage tracing
experiments using plck-Cre reporter mice, which labels cells that
have undergone thymic maturation, reveals that a higher percent-
age of lung ILC2s come from the thymus.38 It is also noteworthy that
in vitro studies of DN1 and DN2 cells in OP9-DL1 cultures treated
with IL-7 and IL-33 show that these cells have the potential to
become ILC2s despite the fact that EILP and ETP gene expres-
sion signatures are phenotypically distinct.39,40 These data are
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consistent with a model in which DN2 to DN3 stage CD127hi

gdT-cell progenitors that fail to productively rearrange g and d

chains are shunted away from the T-cell development and undergo
further development as ILC2s. Previous researchers have shown
that this phenomenon can occur in the context of mutant animals or
stromal cell cultures, but the data presented here, using gene
rearrangements as a lineage tracer, suggest that this can also occur
naturally as a byproduct of normal T-cell development in vivo.

These observations are in sharp contrast to the current dogmatic
view that ILC development occurs exclusively in the bone marrow
and argue instead that early ILC precursors may transit the thymus
before seeding barrier organs. Further support for this view comes
from a recent, elegant, pulse-labeling study to trace the de-
velopment and turnover of ILC2s in peripheral tissues in mice.
These studies concluded that most, if not all, tissue-resident ILC2s
arise perinatally at a stage coinciding with the peak of thymic

gdT cell production. Strikingly, this study also found that once they
establish residence in peripheral tissues, ILC2s turn over very slowly
and self-renew within the peripheral tissue microenvironments.
These authors also found that BM ILC2s also turn over with
extremely slow kinetics (weeks to months rather than days), which
would be unexpected if the BM were a constant source of
peripheral ILC2s.15 It is highly possible that these resident cells
instead have a functional role and modulate the Th2 immune axis by
regulating eosinophil development and production.41,42 Thus, the
evidence to suggest that adult BM contains ILC2 precursors that
seed peripheral tissues at high frequency during steady-state
homeostasis is limited. Indeed, it is more likely that ILC2s present
in the periphery represent tissue-resident cells that expand
locally similar to long-lived macrophages and connective tissue
mast cells that colonize the peripheral tissues early in life and are
only replenished by bone marrow progenitors in crisis situations
of severe inflammation or peripheral ablation.43-45 In aggregate,
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these data suggest that the ILC2s detected in most adult tissues
are the local progeny of cells that developed in parallel to
perinatal T lymphocytes and that have likely transited the thymus

during their life history. Future studies pairing detailed evalua-
tion of gene rearrangements at the single-cell level in the first
vanguard of ILCs that colonize peripheral tissues during
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development and those that persist during later life may help clarify
this issue.
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